Surjectivity of mean value operators on noncompact symmetric spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observability on Noncompact Symmetric Spaces

The \classical case" is the case in which X is a compact riemannian manifold and D is the (positive de nite) Laplacian. Then (1.1) is the heat equation on X . In this paper we'll look at the special case where X is a riemannian symmetric space of noncompact type. Thus X is a noncompact riemannian manifold with a very large symmetry group G, harmonic analysis on X is understood in terms of the s...

متن کامل

Hyperpolar Homogeneous Foliations on Noncompact Symmetric Spaces

We introduce examples of hyperpolar actions on noncompact symmetric spaces that induce a regular foliation. We study some properties of these actions. Finally, we show that any hyperpolar action on a noncompact symmetric space that induces a regular foliation is one of these examples.

متن کامل

L-multipliers for Noncompact Symmetric Spaces.

Let G be a real noncompact semi-simple Lie group with finite center and K a maximal compact sub-group. The symmetric space M = G/K carries a measure invariant under the action of G. The operators which map L(p)(M) continuously into itself and commute with the action of G, can be easily characterized when p = 2 or p = 1. This note gives some results on "singular integrals" which map L(p) into it...

متن کامل

Cohomogeneity One Actions on Noncompact Symmetric Spaces of Rank One

We classify, up to orbit equivalence, all cohomogeneity one actions on the hyperbolic planes over the complex, quaternionic and Cayley numbers, and on the complex hyperbolic spaces CHn, n ≥ 3. For the quaternionic hyperbolic spaces HHn, n ≥ 3, we reduce the classification problem to a problem in quaternionic linear algebra and obtain partial results. For real hyperbolic spaces, this classificat...

متن کامل

Analytic Continuation of Resolvent Kernels on Noncompact Symmetric Spaces

Let X = G/K be a symmetric space of noncompact type and let ∆ be the Laplacian associated with a G-invariant metric on X . We show that the resolvent kernel of ∆ admits a holomorphic extension to a Riemann surface depending on the rank of the symmetric space. This Riemann surface is a branched cover of the complex plane with a certain part of the real axis removed. It has a branching point at t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2017

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2016.12.022